资源类型

期刊论文 1935

年份

2024 5

2023 177

2022 165

2021 166

2020 139

2019 122

2018 129

2017 98

2016 72

2015 103

2014 83

2013 74

2012 53

2011 81

2010 76

2009 81

2008 58

2007 53

2006 18

2005 23

展开 ︾

关键词

高速铁路 14

可持续发展 11

可再生能源 10

节能 10

能源 9

高质量发展 8

关键技术 7

固体氧化物燃料电池 7

核能 7

燃料电池 7

碳中和 6

能源安全 6

创新 5

2035 4

可持续性 4

技术体系 4

技术方向 4

新能源 4

氢能 4

展开 ︾

检索范围:

排序: 展示方式:

Synthesis of aluminum nanoparticles as additive to enhance ignition and combustion of high energy density

Xiu-Tian-Feng E, Lei Zhang, Fang Wang, Xiangwen Zhang, Ji-Jun Zou

《化学科学与工程前沿(英文)》 2018年 第12卷 第3期   页码 358-366 doi: 10.1007/s11705-018-1702-2

摘要:

High energy density fuels are critical for hypersonic aerospace propulsion but suffer from difficulties of ignition delay and incomplete combustion. This research reports aluminum nanoparticles (Al NPs) assisted ignition and combustion of high energy density JP-10 fuel. Al NPs with a size of 16 nm were fabricated through a mild and simple method by decomposing AlH3·Et2O with the addition of a surfactant ligand. The uniform size distribution, nanoscaled size and surface ligand make Al NPs stably suspend in JP-10, with 80% NPs being dispersed in the liquid fuel after six months. A shock tube test shows that the presence of 1 wt-% Al NPs can significantly shorten ignition delay time at temperature of 1500 to 1750 K, promote the combustion, and enhance energy release of JP-10. This work demonstrates the potential of Al NPs as ignition and combustion additive for high energy density fuel in hypersonic applications.

关键词: aluminum nanoparticles     combustion     ignition     shock tube test     high energy density fuel    

Review on cellulose paper-based electrodes for sustainable batteries with high energy densities

《化学科学与工程前沿(英文)》 2023年 第17卷 第8期   页码 1010-1027 doi: 10.1007/s11705-023-2307-y

摘要: Powering the future, while maintaining strong socioeconomic growth and a cleaner environment, is going to be one of the biggest challenges faced by mankind nowadays. Thus, there is a transition from the use of fossil fuels to renewable energy sources. Cellulose, the main component of paper, represents a unique type of bio-based building blocks featuring exciting properties: low-cost, hierarchical fibrous structures, hydrophilicity, biocompatible, mechanical flexibility, and renewability, which make it perfect for use in paper-based sustainable energy storage devices. This review focuses on lithium-ion battery application of celluloses with cellulose at different scales, i.e., cellulose microfibers, and nanocellulose, and highlights the new trends in the field. Recent advances and approaches to construct high mass loading paper electrodes toward high energy density batteries are evaluated and the limitations of paper-based cathodes are discussed. This will stimulate the use of natural resources and thereby the development of renewable electric energy systems based on sustainable technologies with low environmental impacts and carbon footprints.

关键词: cellulose     paper electrodes     Li-ion batteries     high energy density    

Metal-based direct hydrogen generation as unconventional high density energy

Shuo XU, Jing LIU

《能源前沿(英文)》 2019年 第13卷 第1期   页码 27-53 doi: 10.1007/s11708-018-0603-x

摘要: Metals are unconventional hydrogen production materials which are of high energy densities. This paper comprehensively reviewed and digested the latest researches of the metal-based direct hydrogen generation and the unconventional energy utilization ways thus enabled. According to the metal activities, the reaction conditions of metals were generalized into three categories. The first ones refer to those which would violently react with water at ambient temperature. The second ones start to react with water after certain pretreatments. The third ones can only react with steam under somewhat harsh conditions. To interpret the metal-water reaction mechanisms at the molecular scale, the molecule dynamics simulation and computational quantum chemistry were introduced as representative theoretical analytical tools. Besides, the state-of-the-art of the metal-water reaction was presented with several ordinary metals as illustration examples, including the material treatment technologies and the evaluations of hydrogen evolution performances. Moreover, the energy capacities of various metals were summarized, and the application potentials of the metal-based direct hydrogen production approach were explored. Furthermore, the challenges lying behind this unconventional hydrogen generation method and energy strategy were raised, which outlined promising directions worth of further endeavors. Overall, active metals like Na and K are appropriate for rapid hydrogen production occasions. Of these metals discussed, Al, Mg and their alloys offer the most promising hydrogen generation route for clean and efficient propulsion and real-time power source. In the long run, there exists plenty of space for developing future energy technology along this direction.

关键词: metal     hydrogen generation     hydrolysis     metal water reaction     clean energy    

高能量密度爆炸与化学爆炸的物理特征及爆炸次生洪水波效应探讨

周丰峻

《中国工程科学》 2000年 第2卷 第12期   页码 45-51

摘要:

文章根据高能量密度爆炸的辐射流体动力学计算与TNT装药爆炸计算的结果,对二类爆炸波系的形成发展,爆炸近区、远区的物理特征和爆炸作用物理模拟问题进行了研究,得出了对防护工程比较重要的几点结论。同时对于同两类爆炸引起的次生洪水波灾害进行了探讨,阐明了系统开展洪水波防护研究的重要意义。

关键词: 高能量密度爆炸     化学焊炸     冲击波     洪水波    

porous carbon derived from one-step self-activation of zinc gluconate for symmetric supercapacitors with highenergy density

《化学科学与工程前沿(英文)》 2023年 第17卷 第4期   页码 387-394 doi: 10.1007/s11705-022-2250-3

摘要: Porous carbons with high specific area surfaces are promising electrode materials for supercapacitors. However, their production usually involves complex, time-consuming, and corrosive processes. Hence, a straightforward and effective strategy is presented for producing highly porous carbons via a self-activation procedure utilizing zinc gluconate as the precursor. The volatile nature of zinc at high temperatures gives the carbons a large specific surface area and an abundance of mesopores, which avoids the use of additional activators and templates. Consequently, the obtained porous carbon electrode delivers a satisfactory specific capacitance and outstanding cycling durability of 90.9% after 50000 cycles at 10 A∙g–1. The symmetric supercapacitors assembled by the optimal electrodes exhibit an acceptable rate capability and a distinguished cycling stability in both aqueous and ionic liquid electrolytes. Accordingly, capacitance retention rates of 77.8% and 85.7% are achieved after 50000 cycles in aqueous alkaline electrolyte and 10000 cycles in ionic liquid electrolyte. Moreover, the symmetric supercapacitors deliver high energy/power densities of 49.8 W∙h∙kg–1/2477.8 W∙kg–1 in the Et4NBF4 electrolyte, outperforming the majority of previously reported porous carbon-based symmetric supercapacitors in ionic liquid electrolytes.

关键词: self-activation     zinc organic salts     abundant mesopores     symmetric supercapacitor     liquid electrolyte    

Review on design, preparation and performance characterization of gelled fuels for advanced propulsion

《化学科学与工程前沿(英文)》 2022年 第16卷 第6期   页码 819-837 doi: 10.1007/s11705-021-2122-2

摘要: With the increasing demand for high-performance and safe fuels in aerospace propulsion systems, gelled fuels have attracted increasing attention. Because of their unique structure, gelled fuels exhibit the advantages of both solid and liquid fuels, such as high energy density, controllable thrust and storage safety. This review provides an overview on design, preparation and performance characterization of gelled fuels. The composition, preparation process and gelation mechanism of gelled high-energy-density fuels are described. Considering these aspects, the rheology and flow behavior of gelled fuels is summarized in terms of the shear thinning property, dynamic viscoelasticity and thixotropy. Moreover, the progress of atomization of gelled fuels is reviewed with a focus on the effect of atomizing nozzles. In addition, the experiments and theoretical models of single droplet combustion and combustor combustion are described. Finally, research directions for the development and application of gelled fuels are suggested.

关键词: gelled fuels     high-energy-density fuels     rheological properties     atomization     combustion    

Three-dimensional composite Li metal anode by simple mechanical modification for high-energy batteries

《能源前沿(英文)》 2023年 第17卷 第5期   页码 569-584 doi: 10.1007/s11708-023-0875-7

摘要: Lithium (Li) metal is believed to be the “Holy Grail” among all anode materials for next-generation Li-based batteries due to its high theoretical specific capacity (3860 mAh/g) and lowest redox potential (−3.04 V). Disappointingly, uncontrolled dendrite formation and “hostless” deposition impede its further development. It is well accepted that the construction of three-dimensional (3D) composite Li metal anode could tackle the above problems to some extent by reducing local current density and maintaining electrode volume during cycling. However, most strategies to build 3D composite Li metal anode require either electrodeposition or melt-infusion process. In spite of their effectiveness, these procedures bring multiple complex processing steps, high temperature, and harsh experimental conditions which cannot meet the actual production demand in consideration of cost and safety. Under this condition, a novel method to construct 3D composite anode via simple mechanical modification has been recently proposed which does not involve harsh conditions, fussy procedures, or fancy equipment. In this mini review, a systematic and in-depth investigation of this mechanical deformation technique to build 3D composite Li metal anode is provided. First, by summarizing a number of recent studies, different mechanical modification approaches are classified clearly according to their specific procedures. Then, the effect of each individual mechanical modification approach and its working mechanisms is reviewed. Afterwards, the merits and limits of different approaches are compared. Finally, a general summary and perspective on construction strategies for next-generation 3D composite Li anode are presented.

关键词: lithium (Li)-ion battery (LIB)     Li metal battery     three-dimensional (3D) composite Li metal anode     mechanical modification     reducing local current density    

Review of recent advances of polymer based dielectrics for high-energy storage in electronic power devices

Wenjie Sun, Jiale Mao, Shuang Wang, Lei Zhang, Yonghong Cheng

《化学科学与工程前沿(英文)》 2021年 第15卷 第1期   页码 18-34 doi: 10.1007/s11705-020-1939-4

摘要: Polymer-based dielectric capacitors are widely-used energy storage devices. However, although the functions of dielectrics in applications like high-voltage direct current transmission projects, distributed energy systems, high-power pulse systems and new energy electric vehicles are similar, their requirements can be quite different. Low electric loss is a critical prerequisite for capacitors for electric grids, while high-temperature stability is an essential pre-requirement for those in electric vehicles. This paper reviews recent advances in this area, and categorizes dielectrics in terms of their foremost properties related to their target applications. Requirements for polymer-based dielectrics in various power electronic equipment are emphasized, including high energy storage density, low dissipation, high working temperature and fast-response time. This paper considers innovations including chemical structure modification, composite fabrication and structure re-design, and the enhancements to material performances achieved. The advantages and limitations of these methods are also discussed.

关键词: dielectric capacitors     polymer-based dielectrics     energy density     dielectric loss     working temperature     frequency response    

Impact of inter-fuel substitution on energy intensity in Ghana

Boqiang LIN, Hermas ABUDU

《能源前沿(英文)》 2020年 第14卷 第1期   页码 27-41 doi: 10.1007/s11708-019-0656-5

摘要: Energy intensity and elasticity, together with inter-fuel substitution are key issues in the current development stage of Ghana. Translog production and ridge regression are applied for studying these issues with a data range of 2000–2015. The current energy dynamics reveal the expected inverse relationship: higher energy intensity and lower elasticity with economic growth. There are evidences of energy-economic challenges: high energy cost, inefficiency and backfire rebound effect. The implications are higher energy losses in the system, more consumption of lower-quality energy together with low energy technology innovation. Energy is wasted and directly not productive with economic activities. It is observed further that the higher energy intensity invariably increases CO emission because approximately 95% of total energy is derived from hydrocarbons and biomass. An inter-fuel substitution future scenario design was further conducted and the results were positive with growth, lower energy intensity, and improved energy efficiency. Therefore, government and energy policymakers should improve energy efficiency, cost, and productiveness. That is, they should change energy compositions and augment energy technology innovation, thus, increasing renewable share to 15% by 2026, reducing wood and charcoal by about 69%, and increasing natural gas to about 776%. Energy policymakers should enhance the installation of smart energy, cloud energy solution, tokenization of energy system and storage.

关键词: energy intensity     energy elasticity     inter-fuel substitution prospects     energy contribution     Translog production approach     ridge regression    

A methodology for regulating fuel stratification and improving fuel economy of GCI mode via double main-injection

《能源前沿(英文)》 2023年 第17卷 第5期   页码 678-691 doi: 10.1007/s11708-022-0859-z

摘要: Gasoline compression ignition (GCI) combustion faces problems such as high maximum pressure rise rate (MPRR) and combustion deterioration at high loads. This paper aims to improve the engine performance of the GCI mode by regulating concentration stratification and promoting fuel-gas mixing by utilizing the double main-injection (DMI) strategy. Two direct injectors simultaneously injected gasoline with an octane number of 82.7 to investigate the energy ratio between the two main-injection and exhaust gas recirculation (EGR) on combustion and emissions. High-load experiments were conducted using the DMI strategy and compared with the single main-injection (SMI) strategy and conventional diesel combustion. The results indicate that the DMI strategy have a great potential to reduce the MPRR and improve the fuel economy of the GCI mode. At a 10 bar indicated mean effective pressure, increasing the main-injection-2 ratio (Rm-2) shortens the injection duration and increases the mean mixing time. Optimized Rm-2 could moderate the trade-off between the MPRR and the indicated specific fuel consumption with both reductions. An appropriate EGR should be adopted considering combustion and emissions. The DMI strategy achieves a highly efficient and stable combustion at high loads, with an indicated thermal efficiency (ITE) greater than 48%, CO and THC emissions at low levels, and MPRR within a reasonable range. Compared with the SMI strategy, the maximum improvement of the ITE is 1.5%, and the maximum reduction of MPRR is 1.5 bar/°CA.

关键词: gasoline compression ignition     injection strategy     fuel stratification     high efficiency     high load    

CC@BCN@PANI core-shell nanoarrays as ultra-high cycle stability cathode for Zn-ion hybrid supercapacitors

《能源前沿(英文)》 2023年 第17卷 第4期   页码 555-566 doi: 10.1007/s11708-023-0882-8

摘要: Exploring cathode materials that combine excellent cycling stability and high energy density poses a challenge to aqueous Zn-ion hybrid supercapacitors (ZHSCs). Herein, polyaniline (PANI) coated boron-carbon-nitrogen (BCN) nanoarray on carbon cloth surface is prepared as advanced cathode materials via simple high-temperature calcination and electrochemical deposition methods. Because of the excellent specific capacity and conductivity of PANI, the CC@BCN@PANI core-shell nanoarrays cathode shows an excellent ion storage capability. Moreover, the 3D nanoarray structure can provide enough space for the volume expansion and contraction of PANI in the charging/discharging cycles, which effectively avoids the collapse of the microstructure and greatly improves the electrochemical stability of PANI. Therefore, the CC@BCN@PANI-based ZHSCs exhibit superior electrochemical performances showing a specific capacity of 145.8 mAh/g, a high energy density of 116.78 Wh/kg, an excellent power density of 12 kW/kg, and a capacity retention rate of 86.2% after 8000 charge/discharge cycles at a current density of 2 A/g. In addition, the flexible ZHSCs (FZHSCs) also show a capacity retention rate of 87.7% at the current density of 2 A/g after 450 cycles.

关键词: CC@BCN@PANI cathode     Zn-ion hybrid supercapacitor     core-shell nanoarrays     high energy density     ultra-high cycle stability    

Prediction of high-density polyethylene pyrolysis using kinetic parameters based on thermogravimetric

《环境科学与工程前沿(英文)》 2023年 第17卷 第1期 doi: 10.1007/s11783-023-1606-3

摘要:

● Reducting the sampling frequency can enhance the modelling process.

关键词: HDPE     Pyrolysis     Kinetics     Thermogravimetric     ANOVA     Artificial neural network    

Effect of current density on groundwater arsenite removal performance using air cathode electrocoagulation

《环境科学与工程前沿(英文)》 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1399-1

摘要:

• With the same charge, current density had little effect on As(III) removal in ACEC.

关键词: Electrocoagulation     Air cathode     Arsenic     Current density     Energy consumption    

合成超级高能量密度材料途径的探索

于永忠

《中国工程科学》 1999年 第1卷 第2期   页码 91-94

摘要:

高能炸药的发展可以看做经TNT,RDX,HMX三个阶段,而现在进入以CL-20为标志的第四个阶段,CL-20的能量密度增益也仅大于HMX约10%;文章举出了量子化学家们对可能的超级高能量密度材料八氮杂立方烷性能所做的引人注目的计算结果,并强调新的氮同素异形体将是最有希望的超级高能量密度材料。最近在质谱谱线中发现了N5+,Christe制得了N5+的盐。

关于聚合氮Nn,n为一个很大的数字,N原子均以共价键相结合而成为三维的网状结构,它是最值得重视的,有可能成为下一世纪威力最大的超级高级量密度材料。

关键词: 高能量密度材料     氮原子簇     聚合氮    

Rosin side chain type catalyst-free vitrimers with high cross-link density, mechanical strength, and

《化学科学与工程前沿(英文)》 2023年 第17卷 第9期   页码 1267-1279 doi: 10.1007/s11705-022-2291-7

摘要: The emergence of vitrimer, a new class of polymer materials can address the problem of recyclability, reprocess ability and recyclability of thermosetting plastics. Rosin, a natural product, is an ideal raw material for the preparation of polymers in a more sustainable way. Nevertheless, due to the huge steric hindrance caused by the hydrogenated phenanthrene ring structure, the cross-link density of materials is frequently lowered. In this study, hydrogenated rosin was adopted for preparing hydrogenated rosin side-chain type diacids, which were reacted with mixed epoxy to obtain rosin side-chain type vitrimers. It was completely characterized by differential scanning calorimetry test, thermogravimetric analysis, shape memory test and self-healing test. The prepared vitrimers exhibited good self-healing properties, excellent heat resistance (Td = 352 °C) as well as high mechanical properties (tensile strength of 46.75 MPa). The tricyclic diterpene structure of rosin was introduced into the side chain in order to avoid the reduction of cross-link density resulting from the huge steric hindrance of the rigid tricyclic hydrophenylene skeleton. Vitrimers can undergo dynamic transesterification reaction without external catalysts due to the autocatalytic effect of tertiary amines from epoxy. Moreover, our work expanded the application field of rosin, increased the added value of rosin, and provided a novel method for preparing rosin-based vitrimers with ideal properties.

关键词: vitrimers     rosin     catalyst-free     high mechanical properties     dynamic transesterification reaction    

标题 作者 时间 类型 操作

Synthesis of aluminum nanoparticles as additive to enhance ignition and combustion of high energy density

Xiu-Tian-Feng E, Lei Zhang, Fang Wang, Xiangwen Zhang, Ji-Jun Zou

期刊论文

Review on cellulose paper-based electrodes for sustainable batteries with high energy densities

期刊论文

Metal-based direct hydrogen generation as unconventional high density energy

Shuo XU, Jing LIU

期刊论文

高能量密度爆炸与化学爆炸的物理特征及爆炸次生洪水波效应探讨

周丰峻

期刊论文

porous carbon derived from one-step self-activation of zinc gluconate for symmetric supercapacitors with highenergy density

期刊论文

Review on design, preparation and performance characterization of gelled fuels for advanced propulsion

期刊论文

Three-dimensional composite Li metal anode by simple mechanical modification for high-energy batteries

期刊论文

Review of recent advances of polymer based dielectrics for high-energy storage in electronic power devices

Wenjie Sun, Jiale Mao, Shuang Wang, Lei Zhang, Yonghong Cheng

期刊论文

Impact of inter-fuel substitution on energy intensity in Ghana

Boqiang LIN, Hermas ABUDU

期刊论文

A methodology for regulating fuel stratification and improving fuel economy of GCI mode via double main-injection

期刊论文

CC@BCN@PANI core-shell nanoarrays as ultra-high cycle stability cathode for Zn-ion hybrid supercapacitors

期刊论文

Prediction of high-density polyethylene pyrolysis using kinetic parameters based on thermogravimetric

期刊论文

Effect of current density on groundwater arsenite removal performance using air cathode electrocoagulation

期刊论文

合成超级高能量密度材料途径的探索

于永忠

期刊论文

Rosin side chain type catalyst-free vitrimers with high cross-link density, mechanical strength, and

期刊论文